Consumption of Fructose and High Fructose Corn Syrup: Is Fructositis triggered bronchitis, asthma, & auto-immune reactivity merely a side bar in the Etiology of Metabolic Syndrome II (to be defined)? – Evidence and a Hypothesis.

LRD Christopher

A Literature Review in the Program in Biochemistry and Molecular Biology
Submitted to the Faculty of the
Graduate School of Basic Medical Sciences
In Partial Fulfillment of the Requirements
For the Degree of Master of Science
At New York Medical College

2012
Consumption of Fructose and High Fructose Corn Syrup: Is Fructositis triggered bronchitis, asthma, & auto-immune reactivity merely a side bar in the Etiology of Metabolic Syndrome II (to be defined)? – Evidence and a Hypothesis.

Joseph Wu, Ph.D.
Sponsor

Caroline Ojaie, Ph.D.
Reader

Jan Gelfter, Ph.D.
Reader

May 15, 2012
Date of approval
Abstract

Consumption of Fructose and High Fructose Corn Syrup: Is Fructositis triggered bronchitis, asthma, & auto-immune reactivity merely a side bar in the Etiology of Metabolic Syndrome II (to be defined)? – Evidence and a Hypothesis.

A case history and prototype case report provide evidence of allergic reactivity to high fructose corn syrup (HFCS). Ingestion of the sweetener precipitates a cascade of symptoms associated with atypical pneumonitis and respiratory symptomology. Aside from an early onset dry cough, the symptoms do not follow the phenotype most often associated with food borne allergies. The allergic reaction is characterized by symptoms most associated with aero-allergens including bronchial mucus hypersecretion, low grade fever, airway hyper-reactivity, bronchitis triggered asthma, chronic bronchitis, wheezing, allergic rhinitis, eustachian tube dysfunction and inner ear infections. Fructose malabsorption is believed to contribute to the biochemical mechanisms likely involved in the syndrome. The allergenicity of HFCS was discovered during a strict elimination diet in a three to four year old child. Reactivity persists into young adulthood.

The factors contributing to why HFCS has remained an unknown allergen to date are explored including: flu symptom mimicry; the predominant focus by the medical community on native proteins in the main food allergens including peanut, tree nuts, crustacean shellfish, cow's milk, hen's egg, wheat and soy; the inordinate challenges of adherence to an elimination diet given the ubiquitous nature of a food such as HFCS; and the conventional wisdom that aero-allergens trigger respiratory symptomology not foods, and particularly not sugars.

Scientific research available to date indicates that 10% to 30% of “healthy” adults are fructose malabsorbers. Scant research has been done in children. What is available suggests children are at higher risk of being fructose malabsorbers (Riby, et al., 1993). The proposed fructositis hypothesis links the dramatic increases in rates of asthma amongst school aged, preschool and black children since 1984 (Asthma and Allergy Foundation of America (AAFA)), to the concomitant shift from sugar to HFCS occurring during the same time period (USDA). The proposed biochemical mechanisms are that high concentrations of intestinal fructose by those unable to adequately digest and absorb
fructose, leads to modifications and changes in dietary protein fragments (peptides) that turn them into “antigen” capable of triggering an adverse immune response via the AGE/ RAGE pathway (advanced glycation end-products and receptor). Modifications are proposed to occur via the non-enzymatic Maillard reaction, in the high fructose intestinal environment of fructose malabsorbers. The potential roles of IL-6, T helper 17 and gamma delta T cells are explored. Given the ubiquitous presence of HFCS in the US food supply, the fructositis hypothesis and related research raises questions as to its potential role in the many auto-immune diseases recently linked to the AGE/RAGE pathway including Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), COPD, Atherosclerosis, Psoriasis and other auto-immune system disorders.
Revision 2. Corrections to current costs of asthma (over $56 billion), pg. 73;
high-fructose foods correction: apples and watermelons, pg. 27;
Acknowledgements

The author wishes to express her gratitude to Dr. Joseph Wu, Professor and M.S. Program Director, Department of Biochemistry & Molecular Biology, New York Medical College, who provided continuous encouragement, and helped in directing me to exploration of the AGE/ RAGE pathway.

Lots of love and thanks also go out to my musical husband, business partner, and best friend, Prabhat, for his unwavering love and commitment to me and our two children Jevan, and Maya Simone. A million hugs and love go out to Jevan, (an awesome musician), and Maya Simone, (a talented artist and budding scientist), who have brought me so much joy, and enriched my life in so many wonderful ways that would take another book to articulate. Remain forever curious, passionate, and nimble.

Special thanks go out to Maya Simone for her collaboration, insightful brainstorming and valuable editing. Lastly, to my mother, Maria Odette who was always there for me, and who continues to inspire me with her amazing energy level and wisdom.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Signature Page</td>
<td>ii</td>
</tr>
<tr>
<td>Copyright</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>A Case History</td>
<td>5</td>
</tr>
<tr>
<td>A Prototype Case Report</td>
<td>6</td>
</tr>
<tr>
<td>The Hypothesis</td>
<td>8</td>
</tr>
<tr>
<td>What is Fructose Malabsorption?</td>
<td>9</td>
</tr>
<tr>
<td>What is Corn Syrup/ High Fructose Corn Syrup?</td>
<td>10</td>
</tr>
<tr>
<td>Are the adverse effects of fructose malabsorption recognized by the US food industry and the US Food and Drug Administration?</td>
<td>11</td>
</tr>
<tr>
<td>What does scientific research to date tell us about rates of fructose malabsorption in the general population? How do the fructose dosage levels used in these experiments compare to estimated U.S. daily consumption rates? Why are these rates so alarmingly high and why has HFCS become so ubiquitous despite these findings?</td>
<td>13</td>
</tr>
<tr>
<td>HFCS consists of fructose and glucose monomers in varying percentages from 55% to 90% fructose and 45% to 10% glucose. What characteristics of these monomers could explain the immune response observed? How do they differ from sucrose, a disaccharide of fructose and glucose, that does not trigger the same symptoms?</td>
<td>19</td>
</tr>
</tbody>
</table>
Table of Contents, Continued

Since HFCS has been ubiquitous in the food supply since the early 1980's, why hasn't its immunogenicity been identified and characterized in the scientific literature to date? Why is the medical community unaware of its immunogenicity? .. 22

What fructose related diseases have been identified and recognized by the medical community? Is fructositis linked to or associated with any of these known fructose related diseases? .. 25

What are Advanced Glycation End-Products, and Fru-AGE? 28

How might fructose malabsorption lead to Fru-AGE formation and immunogenicity? .. 32

How might differences in blood pH versus intestinal pH contribute to AGEs formation in the gut of fructose malabsorbers? How does this differ from AGEs formation known to occur in the blood stream of Diabetes Mellitus sufferers? .. 34

What is RAGE? What insights can be obtained from RAGE related research? ... 37

What is known about dietary AGEs? .. 41

What is known about the absorption mechanisms of AGEs across the intestinal barrier and their role in activation of the immune system? Formulation of a hypothesis. ... 45

What does research tell us about the link between AGE/ RAGE and lung disease? Possible link between dietary AGE and lung pathology. 51

How might this hypothesis establish a new direction for future research? 58

What are the challenges that lie ahead? .. 62

References ... 65
List of Tables and Figures

Figure 1 - Estimated per capita sweetener consumption, total and by type of sweetener, 1966 – 2004 table; source USDA ... 3

Table 1 - Steps in the production of HFCS; source BeMiller, 2009 10

Table 2 - Frequency of fructose malabsorption in healthy adults and children; summary of research 1983 to 1993; source Riby et al., 1993 18

Figure 2 – Fructose Metabolism; source Berg et al., 2002 27

Figure 3 - The Maillard reaction and Heyns rearrangement: D-fructose and lysine containing protein; source Miyazawa et al, 1998 29

Figure 4 - Nε-carboxy-methyl-lysine (CML) and Nε-carboxy-ethyl-lysine (CEL) end products of the Maillard reaction; source Xue et al 2011.......................... 30

Figure 5 - Maillard reaction: kinetics increased in more basic environments 35

Figure 6 - Maillard reaction with fructose versus glucose, a kinetics comparison at physiological pH. Glucose + protein to Amadori intermediates and CML occurs in weeks to months. Fructose + protein to Heyns intermediates and CML occurs in days to weeks; source Takeuchi et al., 2010 36

Figure 7 - Maillard reaction with fructose at pH 8 – 9 (ileum) as possibly occurring in minutes to hours; source Robalo, 2011 37

Table 3 - Tissue distribution (relative number of expressed-sequence clones per million identified in tissue and species specific databases) of RAGE; source Buckley et al., 2010 .. 39

Figure 8 - How TGF- beta directs development of T helper populations; source Qian and Wahl, 2009 ... 55

Figure 9 - Model of airway inflammation with TGF-β intersecting points; source Qian and Wahl, 2009 ... 56

Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, Shafiu M, Segal M,

Maleki SJ, Chung SY, Champagne ET, Raufman JP. The effects of roasting on the allergenic properties

